

Force

Peak: 312 - 780 N

Continuous: 51 - 102N

Maximum Velocity

Up to 8.7 m/s

Feedback

- Built-in position sensor
- 1V pk-pk sin/cos
- 12 micron repeatability

Range of motion

• Travel lengths up to 1200 mm

Dimensions

W x H: 54 x 95mm

Rod diameter: 25mm

Applications

- Packaging
- Material Handling
- Automated Assembly
- Bio-medical

The OEM advantage

- Reliable and cost-effective
- Flexible position control
- High speed and acceleration
- Clean, quiet operation
- No maintenance or adjustment

ServoTube delivers the speed of a belt-drive system with the clean reliability of a linear forcer at a price unprecedented in the industry. Familiar form factor, integral position feedback and large air gap make installation simple.

The ServoTube forcer components consist of an IP67 rated forcer and a sealed stainless steel thrust rod enclosing rare-earth magnets. Four models deliver a continuous force range of 51~102 N (11~23 lb) with peak forces up to 780 N (175 lb). A range of Thrust Rods are available for travel lengths up to 1200mm.

The patented magnetic design of ServoTube generates 12 micron (0.47 mil) repeatability and 250 micron (10 mil) accuracy from a non-contact, integral position sensor. No external encoder is required. Position output is industry standard 1V pk-pk sin/cos signals.

ServoTube is an ideal OEM solution for easy integration into pick-and-place gantries and general purpose handling machines. The load is mounted directly to the forcer typically supported by a single bearing rail. The Thrust Rod is mounted at both ends, similar to a ballscrew. A large air gap reduces alignment constraints.

The tubular forcer has superior thermal efficeincy, radiating heat uniformly. High duty cycles are possible without the need for forced-air or water cooling.

ServoTube is complemented by a range of matched, self-tuning servo-amplifiers and indexers complete with plug-and-play cabling. Amplifiers interface easily to PLC's and feature CANopen network connectivity for distributed control applications.

RoHS

MODELS STB2504-2510 SERVOTUBE COMPONENTS

ELECTRICAL SPECIFICATIONS

FORCER TYPE	2504		2506		2508		2510		
FORCER TYPE	S ⁽¹⁾	P (1)	S (1)	P (1)	S (1)	P (1)	S (1)	P (1)	units
Peak force @ 25°C ambient for 1 sec	312	156	468	234	624	312	780	390	N
Peak current @ 25°C ambient for 1 sec	2	20	20		20		20		Apk
With 25 x 25 x2.5cm heatsink plate	-								
Continuous stall force @ 25°C ambient (2)	51	1.2	69	9.5	86	5.4	10:	2.4	N
Continuous stall current @ 25°C ambient	2.31	4.62	2.10	4.20	1.96	3.92	1.86	3.72	Arms
	3.27	6.54	2.97	5.94	2.77	5.54	2.62	5.24	Apk
Without heatsink plate	_								
Continuous stall force @ 25°C ambient (2)	42	2.5	59	9.5	75	5.1	90	0.0	N
Continuous stall current @ 25°C ambient	1.92	3.84	1.80	3.60	1.70	3.40	1.63	3.26	Arms
	2.72	5.44	2.54	5.08	2.41	4.82	2.31	4.62	Apk
	1			1	1	1			
Force constant (sine commutation)	22.1	11.0	33.1	16.5	44.1	22.0	55.2	27.6	N/Arms
	15.6	7.8	23.4	11.7	31.2	15.6	39.0	19.5	N/Apk
Back EMF constant (phase to phase)	18.0	9.0	27.0	13.5	36.0	18.0	45.0	22.5	Vpk/m/s
Fundamental forcer constant	6.	47	7.	92	9.	13	10	.24	N/√W
Eddy current loss	9.	51	12	.55	15	.58	18	.61	N/m/s
Resistance @ 25°C (phase to phase)	6.02	1.50	9.02	2.25	12.03	3.01	15.04	3.76	Ohm
Resistance @ 100°C (phase to phase)	7.75	1.94	11.63	2.91	15.51	3.88	19.39	4.85	Ohm
Inductance @ 1kHz (phase to phase)	3.90	0.97	5.85	1.46	7.80	1.95	9.75	2.44	mH
Electrical time constant	0.	65	0.	65	0.	65	0.	65	ms
Maximum working voltage	38	80	38	30	38	30	38	30	V d.c.
Pole pitch (one electrical cycle)	51.2		51	.2	51	1.2	51	1.2	mm
Peak acceleration (3)	223	111	223	111	235	117	256	128	m/s²
Maximum speed (4)	8.7	7.3	6.5	7.2	5.4	7.6	4.6	7.0	m/s

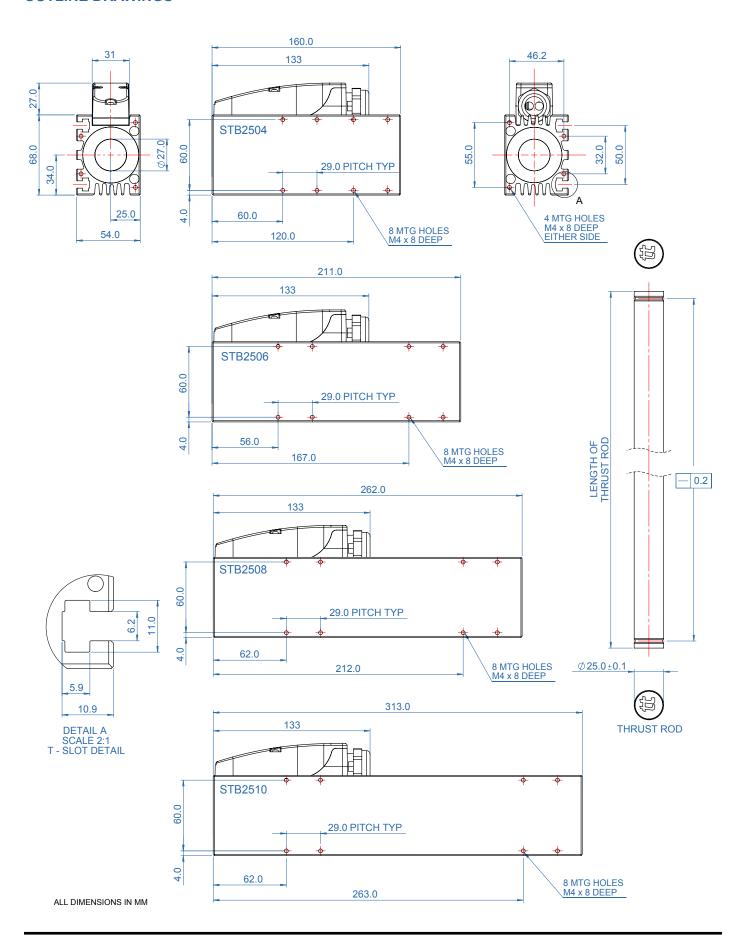
Notes: -

THERMAL SPECIFICATIONS

FORCER TYPE	2504	2506	2508	2510	units
Maximum phase temperature	100	100	100	100	°C
Thermal resistance Rth _{phase-housing}	0.41	0.27	0.20	0.16	°C/Watt
With 25 x 25 x2.5cm heatsink plate					
Power dissipation @ 25°C ambient	62.3	77.0	89.2	100.2	Watt
Thermal resistance Rth _{housing-ambient}	0.79	0.69	0.64	0.59	°C/Watt
Without heatsink plate					
Power dissipation @ 25°C ambient	43.1	56.4	67.6	77.3	Watt
Thermal resistance Rth _{housing-ambient}	1.33	1.06	0.91	0.81	°C/Watt
Thermal time constant	1188	1276	1377	1486	s

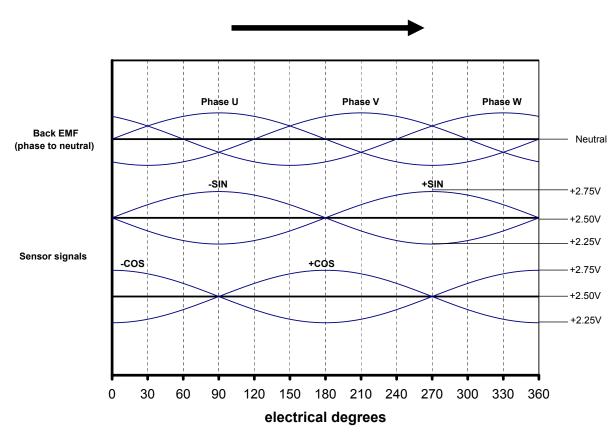
MECHANICAL SPECIFICATIONS

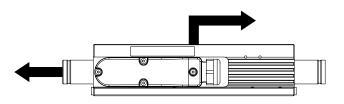
FORCER TYPE	2504	2506	2508	2510	units
Maximum stroke	1180	1129	1078	1027	mm
Forcer mass (including bearings)	1.40	2.10	2.65	3.05	kg
Forcer mass (excluding bearings)	1.15	1.60	2.15	2.55	kg
Thrust rod mass/metre	3.5	3.5	3.5	3.5	kg/m


⁽¹⁾ S=series forcer phases, P=parallel forcer phases

⁽²⁾ Reduce continuous stall force to 89% at 40°C ambient

⁽³⁾ Based on a moving forcer and no payload


⁽⁴⁾ Based on a moving forcer with triangular move over maximum stroke and no payload


OUTLINE DRAWINGS

POSITION SENSOR

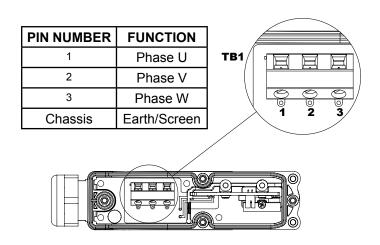
The position sensor outputs analogue, differential sine and cosine signals for providing position feedback. Shown below are the relationships between forcer phase back EMF and position sensor outputs for one direction of motion (as shown by arrows). It should be noted that +SIN or -SIN is always in phase with forcer phase U. For the motion shown, -SIN is in phase with forcer phase U. For motion in the opposing direction +SIN is in phase with forcer phase U.

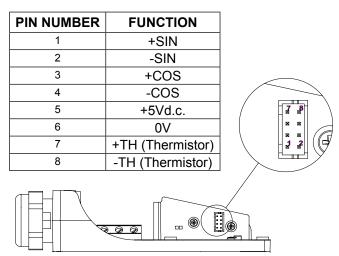
SPECIFICATION	VALUE	units
Output signal period	51.2	mm
Signal amplitude (between +/- signals)	1	Vpk-pk
Output current	± 10	mA
Supply voltage	5 ± 0.25	Vd.c.
Supply current (output current=0)	15 ± 5	mA
Resolution ⁽¹⁾	12	micron
Position repeatability ⁽²⁾	± 12	micron
Absolute accuracy ⁽³⁾	± 250	micron

Notes: -

- (1) Dependent on amplifier
- (2) Dependent on amplifier. Under constant operating conditions. Self-heating of the forcer will cause expansion in the thrust rod during the initial warm up period. In high duty applications (corresponding to an internal forcer temperature of 80°C) a 1 metre thrust rod will expand typically by 250 microns.
- (3) Maximum error over 1 metre under constant operating conditions.

FORCER OVER TEMPERATURE SENSOR


It is strongly recommended that the forcer over-temperature sensor is connected to the drive amplifier or servo controller <u>at all times</u> in order to reduce the risk of damage to the forcer due to excessive temperatures.


Protection is provided by three positive temperature coefficient (PTC) thermistors embedded in the forcer phases. As the forcer phase temperature approaches 100°C, the PTC thermistors exhibits a sharp increase in electrical resistance. This change in resistance can be detected by circuitry within the drive amplifier or servo controller and used to reduce or disable the output of the drive amplifier in order to protect the forcer.

SPECIFICATION	VALUE	units
Resistance in the temperature range -20°C to + 70°C	60 to 750	Ohms
Resistance at 85°C	<u>≤</u> 1650	Ohms
Resistance at 95°C	≥3990	Ohms
Resistance at 105°C	≥12000	Ohms
Maximum continuous voltage	30	Vd.c.

FORCER ELECTRICAL CONNECTIONS

Connections are made within the termination box.

CABLE TYPE

The STB has two separate cables providing connections for forcer power and position sensor. There are two cable types available with option R being supplied as standard. Both cable types are available in 3 metre or 5 metre lengths.

Option S cables are flexible but are not intended for continuous flex or energy chain applications.

OPTION S SPECIFICATION	POWER	SENSOR
Overall diameter (nominal)	8.2mm	7.8mm
Outer jacket material	PVC	PVC
Number of conductors	4	4 x twisted pair
Size of conductors	1.5mm² (16 AWG)	0.14mm ² (26AWG)
Screened / Unscreened	Screened	Screened
Minimum bending radius - fixed routing	41mm	40mm
Operating temperature - flxed routing	-40°C to +90°C	-40°C to +70°C

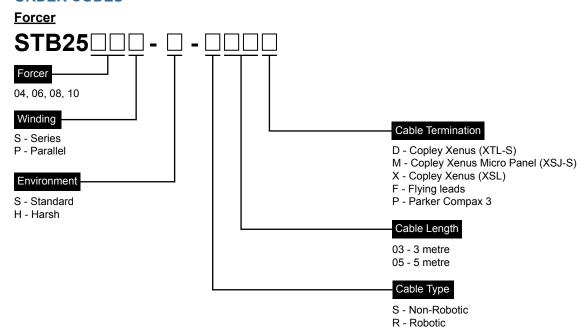
Option R cables are suitable for continuous flex or energy chain applications.

OPTION R SPECIFICATION	POWER	SENSOR
Overall diameter (nominal)	7.6mm	7.8mm
Outer jacket material	PUR	PVC
Number of conductors	4	4 x twisted pair
Size of conductors	1.5mm² (16 AWG)	0.14mm² (26AWG)
Screened / Unscreened	Screened	Screened
Minimum bending radius - flexible routing	38mm	58mm
Operating temperature - flexible routing	-40°C to +80°C	+5°C to +70°C
Operating temperature - flxed routing	-40°C to +80°C	-40°C to +70°C

CABLE TERMINATION

The STB cable is available with five termination options. **Option F** has the wire ends stripped and solder tinned ready for termination. All other options are terminated with connectors that plug directly into the desired amplifier. The connections for all options are shown below: -

SENSOR FUNCTION	D-(XTL-S)	M-(XSJ-S)	X-(XSL)	F-Flying leads	P-(Compax 3)
+SIN	14	1	16	Blue	8
-SIN	13	11	17	Black/Blue	7
+COS	12	2	18	White	12
-COS	11	12	19	Black/White	11
+5Vd.c.	4	17	3	Red	2, 4
0V	5	7	2	Black/Red	1, 15
+TH (Thermistor)	10	20	14	Green	5
-TH (Thermistor)	15	14	15	Black/Green	10
SCREEN	1+ shell	1+ shell	1+ shell	SCREEN	shell
Connector type	15-way high	20-way 2.54mm	20-way 1.27mm		15-way high
	density D	Mini Mate	mini D ribbon	1	density D
Amplifier connection	J8	J6	J8	-	X13
POWER FUNCTION					
Forcer phase U	4	4	4	Black 1	1
Forcer phase V	3	3	3	Black 2	2
Forcer phase W	2	2	2	Black 3	3
Earth (forcer body)	1	1	1	Green/Yellow	4
SCREEN	1	1	1	SCREEN	Amplifier case
Connector type	4-way 5mm	4-way 5mm	4-way 5mm		6-way 7.62mm
	pluggable	pluggable	pluggable	-	pluggable
	terminal	terminal	terminal		terminal
Amplifier connection	J2	J2	J2	-	X3


ENVIRONMENT

The STB is intended for use in an environment within the following conditions: -

SPECIFICATION	VALUE
Operating temperature	0°C to +40°C
Storage temperature	-25°C to +70°C
Ingress protection	IP67
Altitude (above mean sea level)	1000m
Overvoltage category	II
Pollution degree	2
EMC	light industrial

In addition, the STB is available with two environmental coating options. **Option S** has the forcer body coated with a 25 micron layer of black anodise that is suitable for general use. **Option H** has the forcer body coated with a 90 micron layer of hard natural anodise that is suitable for harsher environments.

ORDER CODES

Thrust Rod

